apache spark - Increase memory available to PySpark at runtime -


i'm trying build recommender using spark , ran out of memory:

exception in thread "dag-scheduler-event-loop" java.lang.outofmemoryerror: java heap space 

i'd increase memory available spark modifying spark.executor.memory property, in pyspark, @ runtime.

is possible? if so, how?

update

inspired link in @zero323's comment, tried delete , recreate context in pyspark:

del sc pyspark import sparkconf, sparkcontext conf = (sparkconf().setmaster("http://hadoop01.woolford.io:7077").setappname("recommender").set("spark.executor.memory", "2g")) sc = sparkcontext(conf = conf) 

returned:

valueerror: cannot run multiple sparkcontexts @ once; 

that's weird, since:

>>> sc traceback (most recent call last):   file "<stdin>", line 1, in <module> nameerror: name 'sc' not defined 

you set spark.executor.memory when start pyspark-shell

pyspark --num-executors 5 --driver-memory 2g --executor-memory 2g 

Comments

Popular posts from this blog

python - argument must be rect style object - Pygame -

webrtc - Which ICE candidate am I using and why? -

c# - Better 64-bit byte array hash -